Как правильно выбирать солнечные элементы и модули
В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах, стекле, защитной пленке и раме солнечного модуля. Если вы можете различить качество пайки — то лучше покупать модули с пайкой роботом, а не ручной.
Как определить, какое напряжение у модулей?
В последние годы на рынке появились модули с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов солнечных панелей, — как украинских, так и китайских, — появилась путаница с указанием номинального напряжения солнечных модулей. Мы дадим несколько советов, как определить, какое напряжение у солнечной панели.
Различают несколько напряжений, которые указываются в параметрах солнечных панелей.
- Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей и на шильдике. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже).
Номинальная мощность равна произведению напряжения в ТММ на ток в ТММ. - Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль, а также на его шильдике. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
- Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение сейчас не указывается в спецификациях и на шильдике солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12В аккумуляторы нужно зарядать солнечной панелью с номинальным напряжением 12В, а 24В АБ — солнечной панелью с номинальным напряжением 24В.
Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда АБ номинальным напряжением 12В нужно зарядное устройство с напряжением примерно до 15В. Поэтому 12В солнечная панель должна выдавать такое напряжение при различной температуре.
Поэтому, даже несмотря на то, что напряжение в ТММ солнечной панели равно 17В, она будет заряжать АБ при 14В, а инвертор питать при 10-15В, но все эти элементы будут иметь номинальное напряжение 12В. Таким образом, для потребителя облегчается задача подбора оборудования, совместимого друг с другом.
Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Не все солнечные батареи теперь используются для заряда аккумуляторов, и даже для АБ необязательно иметь СБ с номинальным напряжением 12В. Технология MPPT (поиска максимальной мощности солнечной батареи) позволяет «отвязать» напряжение СБ от номинальных напряжений инвертора и аккумулятора.
Сетевые инверторы и MPPT контроллеры позволили производителям солнечных панелей ориентироваться на размер панелей и их мощность, а не на напряжение. Так появились модули, напряжение которых совершенно не связано с напряжениями на аккумуляторах.
Напряжение солнечной панели определяется количеством солнечных элементов, соединенных последовательно. Каждый солнечный элемент имеет рабочее напряжение чуть менее полувольта. В настоящее время есть модули с количеством элементов 36,48, 54, 60, 72 и 96. Наиболее распространены модули с количеством элементов 36, 60 и 72. На 48, 54 и 96 элементов встречаются гораздо реже. В таблице ниже приведены основные напряжения этих солнечных панелей.
Параметр | Количество элементов в модуле | ||||
36 | 48 | 60 | 72 | 96 | |
Номинальное напряжение, В | 12 | 16 | 20 | 24 | 32 |
Напряжение в ТММ1, В | 17-19 | 23-25 | 29-31 | 33-36 | 47-50 |
Напряжение холостого хода, В | 21-22 | 29-30 | 37-39 | 42-45 | 57-60 |
Напряжение заряжаемых аккумуляторов2, В | 12 | 24 |
1ТММ — точка максимальной мощности
2имеется ввиду возможность заряда при соединении к аккумулятору напрямую или через ШИМконтроллер. Остальные модули можно использовать для заряда аккумуляторов, но при обязательном наличии MPPT контроллера.
При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности (220-270 ватт) с нестандартным номинальным напряжением 20В (с 60 солнечными элементами). Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В (соответственно с 36 и 72 солнечными элементами в цепочке).
Температурная коррекция напряжения
Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.
На что обращать внимание при выборе солнечных модулей для вашей системы солнечного электроснабжения?
Цена против качества
Кроме того, что не все производители и солнечные модули одинаковы (это обсуждается в соответствующей статье, посвященной качеству солнечных элементов), есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.
Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:
- Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
- Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание. Лучше выбирать модули, в которых элементы спаяны роботом — в них разброс качества пайки будет минимальным
- Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
- Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
- В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ. Подробнее об этих модулях можете прочитать в статье про DoubleGlass модули.
- Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.
Толеранс
Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть как положительным, так и отрицательным. Например, модуль c паспортной мощностью 200 Вт может иметь мощность 195Вт; это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 200Вт, но и даже больше. Про важность этого параметра читайте в наших «8 Правилах по выбору солнечной батареи»
Температурный коэффициент
Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.
Эффективность преобразования солнечного света
C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.
Общее количество энергии, затраченной при производстве модуля
Еще один параметр, на который нужно обращать внимание — общее количество энергии, которое может было затрачено при производстве солнечного модуля — от добычи кремния до доставки до магазина готовой продукции. Этот параметр отражает, насколько энергоемким было производство модуля и насколько быстро солнечный модуль выработает такое же количество энергии, какое было потрачено на его производство (так называемая окупаемость о энергии).
Срок службы и гарантии
Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.
Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. А это сделать можно только, если в команде профессионалы (это мы скромно так на себя намекаем ? ). Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.
Размеры и мощность
Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24В (количество элементов в модуле 36 или 72) обычно выше, чем с нестандартным количеством элементов в модуле 48, 54 или 60. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.
Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению (об этом уже писалось на других страницах нашего сайта).
Пиковая мощность всех модулей измерена при стандартных тестовых условиях:
Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47С и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.
Тип солнечных элементов — монокристаллические, поликристаллические, аморфные и др.
Основные типы солнечных элементов, которые сейчас массово продаются на рынке ( первые 3 кремниевые, которые составляют львиную долю рынка), следующие:
- монокристалллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты
- поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристалллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
- аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
- CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают таки модули всего несколько производителей, и цен на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния
В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.
Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Я даже слышал версию, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны». На тему «что лучше — моно или поли» у нас есть специальная статья.
Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей. Для иллюстрации этого факта мы провели сравнили мощности монокристаллических и поликристаллических модулей одних и тех же производителей (см. таблицу).
Что является фактами, так это следующее:
- Монокристаллические модули обычно имеют больший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
- Монокристаллические модули имеют меньшую деградацию со временем.
- Монокристаллические модули дороже за ватт.
- На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 3 шинами (busbars) постепенно вытеснены элементами с 4 шинами, а в последнее время появились модули и с 5BB. Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 3BB элементами лучше, чем noname или Tier3 c 4BB или 5BB.
- Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 250-260Вт модуля можно получить до 320Вт. Такие модули выпускают, например, российский Хевел или китайский Seraphim
Так что еще раз повторим — если хотите получить модули с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами. Мы уже давали ссылки на статью в журнале PV magazine со списком рекомендованных китайским правительством производителей для фотоэлектрических проектов в Китае. Вот еще одна ссылка — тесты калифорнийского агентства California Energy Commission, где приведены данные по большому количеству протестированных независимыми лабораториями модулей. В Европе также проводятся независимые тестирования солнечных панелей. Самая известная лаборатория — TUV — также имеет базу данных солнечных панелей различных производителей, поищите предлагаемый вам модуль в этой базе.
Если в этих списках есть производитель предлагаемых вам модулей — это уже хорошо. Вы можете получить по ним данные независимымых измерений, а не только заявленные продавцами или производителями параметры. Мелкие, «коленочные» производители обычно не попадают в такие списки. Модулей ФСМ и многих прочих продаваемых в Украине под собственными брендами китайских модулей, как вы можете догадаться, там нет. К сожалению, нет там и производимых в Украине модулей — для зрелых рынков США и Европы украинская продукция не представляет интереса. Поэтому, определить реальные параметры украинских солнечных модулей пока нет возможности.